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Introduction

When I was young I learned at school the scribal
art on the tablets of Sumer and Akkad. Among
the high-born no-one could write like me. Where
people go for instruction in the scribal art there
I mastered completely subtraction, addition, cal-
culation and accounting.d

Most mathematicians know at least a little about
‘Babylonian’ mathematics: about the sexagesimal place
value system, written in a strange wedge-shaped script
called cuneiform; about the very accurate approximation
to

$
1;1 and about the famous list of Pythagorean triples,

Plimpton 322.n This kind of information is in most math
history books. So the aim of this article is not to tell you
about things which you can easily read about elsewhere, but
to provide a context for that mathematics—a brief overview
of nearly five millennia of mathematical development and
the environmental and societal forces which shaped those
changes.;

So where are we talking about, and when? The Greek
word ‘Mesopotamia’ means ‘between the rivers’ and has
referred to the land around the Tigris and Euphrates in
modern day Iraq since its conquest by Alexander the Great
in 330 BCE. But its history goes back a good deal further
than that. Mesopotamia was settled from the surrounding
hills and mountains during the course of the fifth millen-
nium BCE. It was here that the first sophisticated, urban
societies grew up, and here that writing was invented, at
the end of the fourth millennium, perhaps in the southern
city of Uruk. Indeed, writing arose directly from the need
to record mathematics and accounting: this is the subject
of the first part of the article. As the third millennium wore
on, counting and measuring systems were gradually revised
in response to the demands of large-scale state bureaucra-
cies. As the second section shows, this led in the end to the
sexagesimal, or base 60, place value system (from which
the modern system of counting hours, minutes and seconds
is ultimately derived).

By the beginning of the second millennium, mathe-
matics had gone beyond the simply utilitarian. This period
produced what most of the text-books call ‘Babylonian’
mathematics, although, ironically, it is highly unlikely that
any of the math comes from Babylon itself: the early sec-
ond millennium city is now deep under the water table and
impossible to excavate. The third part of this article exam-
ines the documents written in the scribal schools to look
for evidence of how math was taught at this time, and why
it might have moved so far from its origins. But after the
mid-second millenniumBCE we have almost no knowledge
of mathematical activity in Mesopotamia, until the era of
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the Greek conquest in the late fourth centuryBCE—when
math from the city of Babylon is known. The fourth and
final part looks at why there is this enormous gap in the
record: was there really very little math going on, or can
we find some other explanations for our lack of evidence?

Counting with clay: from tokens to tablets

But now let us start at the beginning. The Tigris-Euphrates
valley was first inhabited during the mid-fifth millennium
BCE. Peoples who had already been farming the surround-
ing hills of the so-called ‘Fertile Crescent’ for two or three
millennia began to settle, first in small villages, and then
in increasingly large and sophisticated urban centres. The
largest and most complex of these cities were Uruk on
the Euphrates, and Susa on the Shaur river. Exactly why
this urban revolution took place need not concern us here;
more important to the history of mathematics are the con-
sequences of that enormous shift in societal organisation.

Although the soil was fertile and the rivers full, there
were two major environmental disadvantages to living in
the southern Mesopotamian plain. First, the annual rainfall
was not high enough to support crops without artificial ir-
rigation systems, which were in turn vulnerable to destruc-
tion when the rivers flooded violently during each spring
harvest. Second, the area yielded a very limited range of
natural resources: no metals, minerals, stones or hard tim-
ber; just water, mud, reeds and date-palms. Other raw ma-
terials had to be imported, by trade or conquest, utilised
sparingly, and recycled. So mud and reeds were the mate-
rials of everyday life: houses and indeed whole cities were
made of mud brick and reeds; the irrigation canals and their
banks were made of mud reinforced with reeds; and there
were even some experiments in producing agricultural tools
such as sickles from fired clay.

It is not surprising then that mud and reeds deter-
mined the technologies available for other everyday activ-
ities of urban society, such as managing and monitoring
labour and commodities. The earliest known method of
controlling the flow of goods seems to have been in opera-
tion from the time of the earliest Mesopotamian settlement,
predating the development of writing by millennia [Nissen,
Damerow and Englund 1993: 11]. It used small clay ‘to-
kens’ or ‘counters’, made into various geometric or regular
shapes. Each ‘counter’ had both quantitative and qualitative
symbolism: it represented a specific number of a certain
item. In other words it was not just a case of simple one-
to-one correspondence: standard groups or quantities could
also be represented by a single token. It is often impossi-
ble to identify exactly which commodity a particular token
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might have depicted; indeed, when such objects are found
on their own or in ambiguous contexts, it is rarely certain
whether they were used for accounting at all. The clearest
evidence comes when these tokens are found in round clay
envelopes, or ‘bullae’, whose surfaces are covered in im-
pressed patterns. These marks were made, with an official’s
personal cylinder seal, to prevent tampering. The envelope
could not be opened and tokens removed without damaging
the pattern of the seal. In such a society, in which literacy
was restricted to the professional few, these cylinder-seals
were a crucial way of marking individual responsibility or
ownership and, like the tokens, are ideally suited to the
medium of clay.

Of course, sealing the token-filled envelopes meant
that it was impossible to check on their contents, even le-
gitimately, without opening the envelope in the presence
of the sealing official. This problem was overcome by im-
pressing the tokens into the clay of the envelope before
they were put inside. It then took little imagination to see
that one could do without the envelopes altogether. A deep
impression of the tokens on a piece of clay, which could
also be sealed by an official, was record enough.

At this stage, c. 3200BCE, we are still dealing with
tokens or their impressions which represent both a number
and an object in one. A further development saw the sepa-
ration of the counting system and the objects being counted.
Presumably this came about as the range of goods under
central control widened, and it became unfeasible to create
whole new sets of number signs each time a new commod-
ity was introduced into the accounting system. While we
see the continuation ofimpressionsfor numbers, the ob-
jects themselves were now represented on clay either by a
drawing of the object itself or of the token it represented,
incisedwith a sharp reed. Writing had begun.x

Now mathematical operations such as arithmetic could
be recorded. The commodities being counted cannot usu-
ally be identified, as the incised signs which represent them
have not yet been deciphered. But the numerals themselves,
recorded with impressed signs, can be identified with ease.
For instance, one tablet displays a total of eighteen D-
shaped marks on the front, and three round ones, in four
separate enclosures. On the back are eight Ds and four cir-
cles, in one enclosure.E We can conclude that the circular
signs must each be equivalent to ten Ds. In fact, we know
from other examples that these two signs do indeed repre-
sent 1 and 10 units respectively, and were used for counting
discrete objects such as people or sheep.

Using methods like this, a team in Berlin have identi-
fied a dozen or more different systems used on the ancient
tablets from Uruk [Nissen, Damerow and Englund, 1993:



28–29]. There were four sets of units for counting different
sorts of discrete objects, another set for area measures, and
another for counting days, months and years. There were
also four capacity measure systems for particular types of
grain (apparently barley, malt, emmer and groats) and two
for various kinds of dairy fat. A further system is not yet
completely understood; it may have recorded weights. Each
counting or measuring system was context-dependent: dif-
ferent number bases were used in different situations, al-
though the identical number signs could be used in dif-
ferent relations within those contexts. One of the discrete-
object systems was later developed into the sexagesimal
place value system, while some of the other bases were
retained in the relationships between various metrological
units. It is an enormously complex system, which has taken
many years and a lot of computer power to decipher; the
project is still unfinished.

It is unclear what language the written signs repre-
sent (if indeed they are language-specific), but the best
guess is Sumerian, which was certainly the language of
the succeeding stages of writing. But that’s another story;
it’s enough for our purposes to see that the need to record
number and mathematical operations efficiently drove the
evolution of recording systems until one day, just before
3000 BCE, someone put reed to clay and started to write
mathematics.

The third millennium: math for bureaucrats

During the course of the third millennium writing began to
be used in a much wider range of contexts, though admin-
istration and bureaucracy remained the main function of
literacy and numeracy. This restriction greatly hampers our
understanding of the political history of the time, although
we can give a rough sketch of its structure. Mesopotamia
was controlled by numerous city states, each with its own
ruler and city god, whose territories were concentrated on
the canals which supplied their water. Because the incline
of the Mesopotamian plain is so slight—it falls only around
5 cm in every kilometre—large-scale irrigation works had
to feed off the natural watercourses many miles upstream
of the settlements they served. Violent floods during each
year’s spring harvest meant that their upkeep required an
enormous annual expenditure. The management of both
materials and labour was essential, and quantity surveying
is attested prominently in the surviving tablets.

Scribes had to be trained for their work and, indeed,
even from the very earliest phases around 15% of the tablets
discovered are standardised practice lists—of titles and pro-
fessions, geographical names, other sorts of technical ter-
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minology. From around 2500BCE onwards such ‘school’
tablets—documents written for practice and not for work-
ing use—include some mathematical exercises. By this time
writing was no longer restricted to nouns and numbers.
By using the written signs to represent thesoundsof the
objects they represented and not the objects themselves,
scribes were able to record other parts of human speech,
and from this we know that the earliest school math was
written in a now long-dead language called Sumerian. We
currently have a total of about thirty mathematical tablets
from three mid-third millennium cities—Shuruppak, Adab
and Ebla—but there is no reason to suppose that they repre-
sent the full extent of mathematical knowledge at that time.
Because it is often difficult to distinguish between compe-
tently written model documents and genuine archival texts,
many unrecognised school tablets, from all periods, must
have been published classified as administrative material.

Some of the tablets from Shuruppak state a single
problem and give the numerical answer below it [Powell,
1976: 436 n19]. There is no working shown on the tablets,
but these are more than simple practical exercises. They
use a practical pretext to explore the division properties of
the so-called ‘remarkable numbers’ such as 7, 11, 13, 17
and 19, which are both irregular (having factors other than
2, 3 and 5) and prime [cf. Høyrup, 1993]. We also have
a geometrical diagram on a round tablet from Shuruppak
and two contemporary tables of squares from Shuruppak
and Adab which display consciously sexagesimal charac-
teristics [Powell, 1976: 431 & fig. 2]. The contents of the
tablets from Ebla are more controversial: according to one
interpretation, they contain metrological tables which were
used in grain distribution calculations [Friberg, 1986].

Mesopotamia was first unified under a dynasty of
kings based at the undiscovered city of Akkad, in the late
twenty-fourth centuryBCE. During this time the traditional
metrological systems were overhauled and linked together,
with new units based on divisions of sixty. Brick sizes and
weights were standardised too [Powell, 1987–90: 458]. The
new scheme worked so well that it was not substantially
revised until the mid-second millennium, some 800 years
later; indeed, as we shall see, some Akkadian brick sizes
were still being used in the Greek period, in the late fourth
centuryBCE.

There are only eight known tablets containing math-
ematical problems from the Akkadian period, from Girsu
and Nippur. The exercises concern squares and rectangles.
They either consist of the statement of a single problem
and its numerical answer, or contain two stated problems
which are allocated to named students. In these cases the
answers are not given, and they appear to have been written



by an instructor in preparation for teaching. Indeed, one of
these assigned problems has a solved counterpart amongst
the problem texts. Certain numerical errors suggest that
the sexagesimal place system was in use for calculations,
at least in prototype form [Whiting, 1984].

A round tablet from Nippur shows a mathematical di-
agram which displays a concern with the construction of
problems to produce integer solutions. The trapezoid has
a transversal line parallel to the base, dividing it into two
parts of equal area. The lengths of the sides are chosen in
such a way that the length of the transversal line can be
expressed in whole numbers [Friberg, 1987–90: 541]. No
mathematical tables are known from this period, but model
documents of various kinds have been identified, including
a practice account from Eshnunna and several land surveys
and building plans [Westenholz, 1977: 100 no. 11; Foster,
1982: 239–40]. In working documents too, we see a more
sophisticated approach to construction and labour manage-
ment, based on the new metrological systems. The aim was
to predict not only the raw materials but also the manpower
needed to complete state-funded agricultural, irrigation and
construction projects, an aim which was realised at the
close of the millennium under the Third Dynasty of Ur.

The Ur III empire began to expand rapidly towards
the east in the second quarter of the 21st centuryBCE.
At its widest extent it stretched to the foothills of the Za-
gros mountains, encompassing the cities of Urbilum, Ashur,
Eshnunna and Susa. To cope with the upkeep of these
new territories and the vastly increased taxation revenues
they brought in, large-scale administrative and economic
reforms were executed over the same period. They pro-
duced a highly centralised bureaucratic state, with virtually
every aspect of its economic life subordinated to the over-
riding objective of the maximisation of gains. These ad-
ministrative innovations included the creation of an enor-
mous bureaucratic apparatus, as well as of a system of
scribal schools that provided highly uniform scribal and
administrative training for the prospective members of the
bureaucracy. Although little is currently known of Ur III
scribal education, a high degree of uniformity must have
been essential to produce such wholesale standardisation in
the bureaucratic system.

As yet only a few school mathematical texts can be
dated with any certainty to the Ur III period, but between
them they reveal a good deal about contemporary educa-
tional practice. There are two serious obstacles to the con-
fident identification of school texts from the Ur III period
when, as is often the case, they are neither dated nor ex-
cavated from well-defined find-spots. Firstly, there is the
usual problem of distinguishing between competently writ-
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ten practice documents and those produced by working
scribes. Secondly, palaeographic criteria must be used to as-
sign a period to them. In many cases it is matter of dispute
whether a text is from the late third millennium or was writ-
ten using archaising script in the early second millennium.
In particular, it was long thought that the sexagesimal place
system, which represents numerals using just tens and units
signs, was an innovation of the following Old Babylonian
period so that any text using that notation was assumed
to date from the early second millennium or later. How-
ever, we now know that it was already in use by around
2050 BCE—and that the conceptual framework for it had
been under construction for several hundred years. Cru-
cially, though, calculations in sexagesimal notation were
made on temporary tablets which were then reused after
the calculation had been transferred to an archival docu-
ment in standard notation [Powell, 1976: 421].� We should
expect, then, to find neither administrative documents us-
ing the sexagesimal system nor sexagesimal school texts
which were used to train the scribes (because, in general,
they were destroyed after use, and we can hardly distin-
guish them from later examples).

One conspicuous exception to our expectations is a
round model document from Girsu [Friberg, 1987–90:
541]. On one side of the tablet is a (slightly incorrect)
model entry from a quantity survey, giving the dimensions
of a wall and the number of bricks in it. The measure-
ments of the wall are given in standard metrological units,
but have been (mis-)copied on to the reverse in sexages-
imal notation. The volume of the wall, and the number
of bricks in it, are then worked out using the sexagesimal
numeration, and converted back into standard volume and
area measure, in which systems they are written on the
obverse of the tablet. These conversions were presumably
facilitated by the use of metrological tables similar to the
many thousands of Old Babylonian exemplars known. In
other words, scribal students were already in the Ur III pe-
riod taught to perform their calculations—in sexagesimal
notation—on tablets separate from the model documents to
which they pertained, which were written in the ubiquitous
mixed system of notation.

The writer of that tablet from Girsu might easily have
gone on to calculate the labour required to make the bricks,
to carry them to the building site, to mix the mortar, and
to construct the wall itself. These standard assumptions
about work rates were at the heart of the Ur III regime’s
bureaucracy. Surveyors’ estimates of a work gang’s ex-
pected outputs were kept alongside records of their ac-
tual performances—for tasks as diverse as milling flour to
clearing fallow fields. At the end of each administrative



year, accounts were drawn up, summarising the expected
and true productivity of each team. In cases of shortfall,
the foreman was responsible for catching up the following
year; but work credits could not be carried over [Englund,
1991]. The constants used in these administrative calcula-
tions are found in a few contemporary school practice texts
too [Robson 1999: 31].

Math education in the early second
millennium

But such a totalitarian centrally-controlled economy could
not last, and within a century the Ur III empire had col-
lapsed under the weight of its own bureaucracy. The dawn
of the second millenniumBCE—the so-called Old Baby-
lonian period—saw the rebirth of the small city states,
much as had existed centuries before. But now many of
the economic functions of the central administration were
deregulated and contracted out to private enterprise. Nu-
merate scribes were still in demand, though, and we have
an unprecedented quantity of tablets giving direct or in-
direct information on their training. Many thousands of
school tablets survive although they are for the most part
unprovenanced, having been dug up at the end of the nine-
teenth century (CE!) before the advent of scientific archae-
ology. However, mathematical tablets have been properly
excavated from a dozen or so sites, from Mari and Terqa
by the Euphrates on the Syria-Iraq border to Me-Turnat on
the Diyala river and Susa in south-west Iran.

We know of several school houses from the Old Baby-
lonian period, from southern Iraq [Stone, 1987: 56–59;
Charpin, 1986: 419–33]. They typically consist of several
small rooms off a central courtyard, and would be indistin-
guishable from the neighbouring dwellings if it were not for
some of the fittings and the tablets that were found inside
them. The courtyard of one house in Nippur, for instance,
had built-in benches along one side and a large fitted basin
containing a large jug and several small bowls which are
thought to have been used for the preparation and moist-
ening of tablets. There was also a large pile of crumpled
up, half-recycled tablets waiting for re-use. The room be-
hind the courtyard had been the tablet store, where over a
thousand school tablets had been shelved on benches and
perhaps filed in baskets too. Judging by the archaeological
evidence and the dates on some of the tablets, both school
houses were abandoned suddenly during the political up-
heavals of 1739BCE. If the buildings had fallen into disuse
or their functions had changed for more peaceful reasons,
we would expect the tablets to have been cleared out of the
houses, or perhaps used as rubble in rebuilding work.
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Some of the school tablets were written by the teach-
ers, while others were ‘exercise tablets’ composed by the
apprentice scribes. Sumerian, which had been the official
written language of the Ur III state, was gradually ousted
by Akkadian—a Semitic language related to Hebrew and
Arabic but which used the same cuneiform script as Sume-
rian. Akkadian began to be used for most everyday writings
while Sumerian was reserved for scholarly and religious
texts, analogous to the use of Latin in Europe until very re-
cently. This meant that much of the scribal training which
had traditionally been oral was recorded in clay for the
first time, either in its original Sumerian, or in Akkadian
translation, as was the case for the mathematical texts.

Math was part of a curriculum which also included
Sumerian grammar and literature, as well as practice in
writing the sorts of tablets that working scribes would
need. These included letters, legal contracts and various
types of business records, as well as more mathematically
orientedmodel documentssuch as accounts, land surveys
and house plans. Five further types of school mathematical
text have been identified, each of which served a separate
pedagogical function [Robson, 1999: 8–15]. Each type has
antecedents in the third millennium tablets discussed in the
previous section.

First, students wrote outtables while memorising
metrological and arithmetical relationships. There was a
standard set of multiplication tables, as well as aids for di-
vision, finding squares and square roots, and for converting
between units of measurement. Many scribes made copies
for use at work too.Calculationswere carried out, in formal
layouts, on small round tablets—called ‘hand tablets’—
very like the third millennium examples mentioned above.
Hand tablets could serve as the scribes’ ‘scratch pads’ and
might also carry diagrams and short notes as well as hand-
writing practice and extracts from literature. The teacher set
mathematical problems from ‘textbooks’—usually called
problem texts in the modern literature—which consisted
of a series of (often minimally different) problems and
their numerical answers. They might also contain model
solutions and diagrams. Students sometimes copied prob-
lem texts, but they were for the most part composed and
transmitted by the scribal teachers. Teachers also keptso-
lution lists containing alternative sets of parameters, all
of which would give integer answers for individual prob-
lems [Friberg, 1981]. There were also tables of techni-
cal constants—conventionally known ascoefficient lists—
many of whose entries are numerically identical to the con-
stants used by the personnel managers of the Ur III state
[Kilmer, 1960; Robson, 1999].M



Model solutions, in the form of algorithmic instruc-
tions, were not only didactically similar to other types of ed-
ucational text, but were also intrinsic to the very way math-
ematics was conceptualised. For instance, the problems
which have conventionally been classified as ‘quadratic
equations’ have recently turned out to be concerned with a
sort of cut-and-paste geometry [Høyrup, 1990; 1995]. As
the student followed the instructions of the model solu-
tion, it would have been clear that the method was right—
because it worked—so that no proof was actually needed.

The bottom line for Old Babylonian education must
have been to produce literate and numerate scribes, but
those students were also instilled with the aesthetic pleasure
of mathematics for its own sake. Although many ostensi-
bly practical scenarios were used as a pretext for setting
non-utilitarian problems, and often involved Ur III-style
technical constants, they had little concern with accurate
mathematical modelling. Let us take the topic of grain-piles
as an example. In the first sixteen problems of a problem
text from Sippar the measurements of the grain-pile remain
the same, while each parameter is calculated in turn.� The
first few problems are missing, but judging from other texts
we would expect them to be on finding the length, then the
width, height, etc. The first preserved problem concerns
finding the volume of the top half of the pile.

One could imagine how such techniques might be use-
ful to a surveyor making the first estimate of the capacity of
a grain-pile after harvest—and indeed we know indirectly
of similar late third millennium measuring practices. How-
ever, then things start to get complicated. The remaining
problems give data such as the sum of the length and top,
or the difference between the length and the thickness, or
even the statement that the width is equal to half of the
length plus 1. It is hardly likely that an agricultural over-
seer would ever find himself needing to solve this sort of
a problem in the course of a working day.

Similarly, although the mathematical grain-pile is a
realistic shape—a rectangular pyramid with an elongated
apex—even simply calculating its volume involves some
rather sophisticated three-dimensional geometry, at the cut-
ting edge of Old Babylonian mathematics as we know it.
Further, it appears that at some point the scenario was fur-
ther refined to enable mathematically more elegant solu-
tions to be used in a tablet from Susa.d( In both sets of
problems the pile is 60 m long and 18–24 m high. It is
difficult to imagine how a grain pile this big could ever
be constructed, let alone measured with a stick. In short,
the accurate mathematical modelling of the real world was
not a priority of Old Babylonian mathematics; rather it was
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concerned with approximations to it that were both good
enough and mathematically pleasing.

The evidence for mathematical methods in the Old
Babylonian workplace is still sketchy, but one can look
for it, for instance, in canal and land surveys. Although
these look rather different from their late third millennium
precursors—they are laid out in the form of tables, with the
length, width and depth of each excavation in a separate
column, instead of in lists—the mathematical principles in-
volved are essentially the same. There is one important dis-
tinction though; there is no evidence (as yet) for work-rate
calculations. This is not surprising; we are not dealing with
a centralised ‘national’ bureaucracy in the early second mil-
lennium, but quasi-market economies in which much of
the work traditionally managed by the state was often con-
tracted out to private firms bound by legal agreements. One
would not expect a consistent picture of quantitative man-
agement practices throughout Mesopotamia, even where
such activities were documented.

What happened next?
Tracing the path to Hellenistic Babylon

After about 1600BCE mathematical activity appears to
come to an abrupt halt in and around Mesopotamia. Can
it simply be that math was no longer written down, or can
we find some other explanation for the missing evidence?

For a start, it should be said that there is a sudden
lack of tablets of all kinds, not just school mathematics.
The middle of the second millenniumBCE was a turbulent
time, with large population movements and much political
and social upheaval. This must have adversely affected the
educational situation. But there is the added complication
that few sites of this period have been dug, and that further,
the tablets which have been excavated have been studied
very little. Few scholars have been interested in this period
of history, partly because the documents it has left are so
difficult to decipher.

But, further, from the twelfth centuryBCE onwards the
Aramaic language began to take over from Akkadian as the
everyday vehicle of both written and oral communication.
Aramaic was from the same language-family as Akkadian,
but had adopted a new technology. It was written in ink
on various perishable materials, using an alphabet instead
of the old system of syllables on clay. Sumerian, Akka-
dian and the cuneiform script were retained for a much
more restricted set of uses, and it may be that math was
not usually one of them. It appears too that cuneiform was
starting to be written in another new medium, wax-covered
ivory or wooden writing-boards, which could be melted



down and smoothed off as necessary. Although contem-
porary illustrations and references on clay tablets indicate
that these boards were in widespread use, very few have
been recovered—all in watery contexts which aided their
preservation—but the wax had long since disappeared from
their surfaces. So even if mathematics were still written in
cuneiform, it might well have been on objects which have
not survived.

These factors of history, preservation and fashions in
modern scholarship have combined to mean that the period
between around 1600 and 1000BCE in south Mesopotamia
is still a veritable dark age for us. The light is beginning
to dawn, though, and there is no reason why school texts,
including mathematics, should not start to be identified,
supposing that they are there to be spotted. But, fortunately
for us, the art of writing on clay did not entirely die out,
and there are a few clues available already. Mathematical
and metrological tables continued to be copied and learnt
by apprentice scribes; they have been found as far afield
as Ashur on the Tigris, Haft Tepe in southwest Iran, and
Ugarit, Hazor and Byblos on the Mediterranean coast. One
also finds evidence of non-literate mathematical concepts,
which have a distinctly traditional flavour. Not only do
brick sizes remain more or less constant—which strongly
suggests that some aspects of third millennium metrology
were still in use—but there are also some beautiful and so-
phisticated examples of geometrical decoration. There are,
for instance, stunning patterned ‘carpets’ carved in stone
from eighth and seventh century Neo-Assyrian palaces—
an empire more renowned for its brutal deportations and
obsession with astrology than for its contributions to cul-
tural heritage.

But perhaps more excitingly, a mathematical prob-
lem is known in no less than three different copies, from
Nineveh and Nippur.dd Multiple exemplars are rare in the
mathematically-rich Old Babylonian period, but for the bar-
ren aftermath it may be an indication of the reduced reper-
toire of problems in circulation at that time. Its style shows
that mathematical traditions of the early second millennium
had not died out, while apparently new scenarios for set-
ting problems had developed. It is a teacher’s problem text,
for a student to solve, and it is couched in exactly the sort
of language known from the Old Babylonian period. But
interestingly it uses a new pretext. The problem ostensi-
bly concerns distances between the stars, though in fact it
is about dealing with division by ‘remarkable’ numbers—
a topic which, as we have seen, goes back as far as the
mid-third millennium.

Finally we arrive in Babylon itself—a little later than
the Persians and Greeks did. By the fourth and third cen-
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turies BCE indigenous Mesopotamian civilisation was dy-
ing. Some of the large merchant families of Uruk and Baby-
lon still used tablets to record their transactions, but the
temple libraries were the principal keepers of traditional
cuneiform culture. Their collections included huge series
of omens, historical chronicles, and mythological and re-
ligious literature as well as records of astronomical obser-
vations. It has often been said that mathematics by now
consisted entirely of mathematical methods for astronomy,
but that is not strictly true. As well as the mathematical
tables—now much lengthier and sophisticated than in ear-
lier times—we know of at least half a dozen tablets con-
taining non-astronomical mathematical problems for solu-
tion. Although the terminology and conceptualisation has
changed since Old Babylonian times—which, after all, is
only to be expected—the topics and phraseology clearly
belong to the same stream of tradition. Most excitingly, a
small fragment of a table of technical constants has re-
cently been discovered, which contains a list of brick sizes
and densities. Although the mathematics involved is rather
more complicated than that in similar earlier texts, the brick
sizes themselves are exactly identical to those invented in
the reforms of Akkad around two thousand years before.

Conclusions

I hope I have been able to give you a little taste of the rich
variety of Mesopotamian math that has come down to us.
Its period of development is vast. There is twice the time-
span between the first identifiable accounting tokens and
the latest known cuneiform mathematical tablet as there is
between that tablet and this book. Most crucially, though,
I hope that you will agree with me that mathematics is
fundamentally a product of society. Its history is made im-
measurably richer by the study of the cultures which have
produced it, wherever and whenever they might be.
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Time chart showing major political, societal, technological and mathematical developments in the ancient Near East.d1
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Map showing the principal modern cities of the Near East and all the ancient sites mentioned in the text.
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Endnotes
d From a hymn of self-praise to king Shulgi, 21st centuryBCE;
cf. Castellino 1972: 32.
1 1;24 51 10 (� d3;d;1d1� 3 3 3) in YBC 7289 [Neugebauer and
Sachs 1945: 42]. In general I have tried to cite the most recent,
reliable and easily accessible sources, rather than present an ex-
haustive bibliography for the topic.
n See, for instance, Joseph, 1991: 91–118; Katz, 1993: 6–7, 24–
28.
; For general works on ancient Near Eastern history and culture,
see the suggestions for further reading at the end.
x According to a recent theory, tokens could have been used like
abacus counters for various arithmetical operations [Powell 1995].
E VAT 14942: see Nissen, Damerow and Englund, 1993: pl. 22.
� That is, in cuneiform signs which indicate both the absolute
value of the number and the system of measurement used.
M The major publications of Old Babylonian mathematical texts
are still Neugebauer, 1935–37; Thureau-Dangin, 1938; Neuge-
bauer and Sachs, 1945; Bruins and Rutten, 1961. For an index of
more recent publications, editions and commentaries, see Nemet-
Nejat, 1993.
� BM 96954 + BM 102366 + ŚE 93, published in Robson, 1999:
Appx. 3.
d( TMS 14; Robson, 1999: ch. 7.
dd HS 245, Sm 162, Sm 1113. See most recently Horowitz, 1993.
d1 Dates earlier than 911BCE are not accurate, and vary from
book to book and scholar to scholar, as do the names and dates
of the periods into which Mesopotamian political history is con-
ventionally divided.


